The contribution of renewable energies to the reduction of the impact of fossil fuels sources and especially energy supply in remote areas has occupied a role more and more important during last decades. The estimation of renewable power plants performances by means of deterministic models is usually limited by the innate variability of the energy resources. The accuracy of energy production forecasting results may be inadequate. An accurate feasibility analysis requires taking into account the randomness of the primary resource operations and the effect of component failures in the energy production process. This paper treats a novel approach to the estimation of energy production in a real photovoltaic power plant by means of dynamic reliability analysis based on Stochastic Hybrid Fault Tree Automaton (SHyFTA). The comparison between real data, deterministic model and SHyFTA model confirm how the latter better estimate energy production than deterministic model.

Dynamic performance evaluation of photovoltaic power plant by stochastic hybrid fault tree automaton model

Chiacchio, Ferdinando;FAMOSO, FABIO;D'Urso, Diego;
2018

Abstract

The contribution of renewable energies to the reduction of the impact of fossil fuels sources and especially energy supply in remote areas has occupied a role more and more important during last decades. The estimation of renewable power plants performances by means of deterministic models is usually limited by the innate variability of the energy resources. The accuracy of energy production forecasting results may be inadequate. An accurate feasibility analysis requires taking into account the randomness of the primary resource operations and the effect of component failures in the energy production process. This paper treats a novel approach to the estimation of energy production in a real photovoltaic power plant by means of dynamic reliability analysis based on Stochastic Hybrid Fault Tree Automaton (SHyFTA). The comparison between real data, deterministic model and SHyFTA model confirm how the latter better estimate energy production than deterministic model.
Aging; Monte Carlo simulation; Photovoltaic power plant; Renewable energy; Stochastic hybrid automaton; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
energies-11-00306_Dynamic performance evaluation of photovoltaic power plant.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/361466
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact