GYY4137 is a hydrogen sulfide (H 2 S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson's disease, Alzheimer's disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 µM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H 2 S donor, Na 2 S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.

The H2S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide

Mazzon, Emanuela;Basile, Maria Sofia;COLLETTI, GIUSEPPE;Petralia, Maria Cristina;Nicoletti, Ferdinando;
2018-01-01

Abstract

GYY4137 is a hydrogen sulfide (H 2 S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson's disease, Alzheimer's disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 µM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H 2 S donor, Na 2 S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.
2018
GYY4137; Hydrogen sulfide; Inflammation; Microglia; Reactive oxygen species; Animals; Cell Line; Cytokines; Microglia; Morpholines; Nitric Oxide; Nitric Oxide Synthase Type II; Organothiophosphorus Compounds; Phagocytosis; Phenotype; Reactive Oxygen Species; Analytical Chemistry; Chemistry (miscellaneous); Molecular Medicine; 3003; Drug Discovery3003 Pharmaceutical Science; Physical and Theoretical Chemistry; Organic Chemistry
File in questo prodotto:
File Dimensione Formato  
The H2S donor GYY4137.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/361750
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact