Smart homes/offices based on Wireless Sensor Networks (WSNs) can provide an assisted living and working environment to the users. In these applications, the distributed network nodes are made up of low-power low-cost high-energy-efficient electronic platforms equipped with sensors, microcontroller, radio and antenna, able to periodically sense, receive, store, pre-process and transmit ambient data to a remote host station. Conventional nodes are usually supplied by batteries, resulting in a significant limitation to the life time and to the maximum number of deployable devices. To meet the demand of next Internet of Things (IoT) applications, requiring a vast plurality of interconnected wireless network nodes, this paper presents the design and implementation of a WSN platform whose nodes are energetically autonomous thanks to an embedded photovoltaic (PV) panel associated to a rechargeable battery and a power-efficient design with optimized power-management strategy. The implemented node is able to harvest indoor ambient light starting from 100 lux and, according to the available energy, adaptively sets the sensors acquisition and RF transmission rate. Moreover, it provides long-distance data transmission with air data rate from 1 to 500 kbps. The WSN node device is implemented on an 8.6 × 5.4-cm2 flexible PCB, being therefore amenable to conform even to curved surfaces. Comparison with commercial IoT nodes reveals a significant improvement in the state of the art.

Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/Office Automation

G. Giustolisi;A. D. Grasso
Co-primo
;
G. Palumbo;S. Pennisi;G. Sorbello;
2019

Abstract

Smart homes/offices based on Wireless Sensor Networks (WSNs) can provide an assisted living and working environment to the users. In these applications, the distributed network nodes are made up of low-power low-cost high-energy-efficient electronic platforms equipped with sensors, microcontroller, radio and antenna, able to periodically sense, receive, store, pre-process and transmit ambient data to a remote host station. Conventional nodes are usually supplied by batteries, resulting in a significant limitation to the life time and to the maximum number of deployable devices. To meet the demand of next Internet of Things (IoT) applications, requiring a vast plurality of interconnected wireless network nodes, this paper presents the design and implementation of a WSN platform whose nodes are energetically autonomous thanks to an embedded photovoltaic (PV) panel associated to a rechargeable battery and a power-efficient design with optimized power-management strategy. The implemented node is able to harvest indoor ambient light starting from 100 lux and, according to the available energy, adaptively sets the sensors acquisition and RF transmission rate. Moreover, it provides long-distance data transmission with air data rate from 1 to 500 kbps. The WSN node device is implemented on an 8.6 × 5.4-cm2 flexible PCB, being therefore amenable to conform even to curved surfaces. Comparison with commercial IoT nodes reveals a significant improvement in the state of the art.
Energy harvesting, home automation, Internet of Things (IoT), low power, microcontrollers, wireless sensor network (WSN)
File in questo prodotto:
File Dimensione Formato  
R037 - Autonomous Energy-efficient Wireless Sensor Network Platform for Home-Office Automation.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Dimensione 3.82 MB
Formato Adobe PDF
3.82 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/362513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact