Properly driving protein interactions with solid surfaces play a very important role in many natural processes, stimulating a great interest for the design of new biomaterials and medical devices. Despite the progress in this field, many further upgrades have to be achieved to better exploit the protein driving, in terms of control of amounts and conformation of the adsorbing proteins. In this paper, new biocompatible amino acid-calix[4]crown-5 bilayers were built as nano-templating surfaces, hosting a controlled number of anchoring sites, able to immobilize proteins in well-defined quantity, and the evaluated footprint data support the idea of oriented protein on analyzed substrates. The efficiency of the setup was tested for the particular case of antibacterial lysozyme adsorption on biocompatible surfaces.

Biomimetic protein-harpooning surfaces

Messina, G. M. L.;Bonaccorso, C.;RAPISARDA, ANTONINO;CASTROFLORIO, BENEDETTA;Sciotto, D.;Marletta, G.
2018-01-01

Abstract

Properly driving protein interactions with solid surfaces play a very important role in many natural processes, stimulating a great interest for the design of new biomaterials and medical devices. Despite the progress in this field, many further upgrades have to be achieved to better exploit the protein driving, in terms of control of amounts and conformation of the adsorbing proteins. In this paper, new biocompatible amino acid-calix[4]crown-5 bilayers were built as nano-templating surfaces, hosting a controlled number of anchoring sites, able to immobilize proteins in well-defined quantity, and the evaluated footprint data support the idea of oriented protein on analyzed substrates. The efficiency of the setup was tested for the particular case of antibacterial lysozyme adsorption on biocompatible surfaces.
2018
Materials Science (all)
File in questo prodotto:
File Dimensione Formato  
Biomimetic protein-harpooning surfaces.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/362830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact