This study reports an investigation on the ability of organically modified clays to bind mycotoxins, fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are commercia materials prepared from natural clays, generally montmorillonite, by exchanging the inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 organically modified clays and 3 nonmodified clays, used as controls, has confirmed that the presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On the basis of the results of the screening test, four modified clays and a Na-montmorillonite were selected for the determination of the adsorption kinetics and isotherms. On all the tested materials adsorption took place within one hour of contact with fumonisins solutions. Adsorption isotherms have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they were differently adsorbed on the modified clays. Addition of 2% modified clays to contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 released in solution. Although in vivo experiments are required to confirm the effectiveness of the organically modified clays, these preliminary results suggest that these materials are promising as fumonisins binders. © 2013 Copyright Taylor and Francis Group, LLC.

Organically modified clays as binders of fumonisins in feedstocks

Baglieri, Andrea;Gennari, Mara;Nègre, Michèle
2013-01-01

Abstract

This study reports an investigation on the ability of organically modified clays to bind mycotoxins, fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are commercia materials prepared from natural clays, generally montmorillonite, by exchanging the inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 organically modified clays and 3 nonmodified clays, used as controls, has confirmed that the presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On the basis of the results of the screening test, four modified clays and a Na-montmorillonite were selected for the determination of the adsorption kinetics and isotherms. On all the tested materials adsorption took place within one hour of contact with fumonisins solutions. Adsorption isotherms have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they were differently adsorbed on the modified clays. Addition of 2% modified clays to contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 released in solution. Although in vivo experiments are required to confirm the effectiveness of the organically modified clays, these preliminary results suggest that these materials are promising as fumonisins binders. © 2013 Copyright Taylor and Francis Group, LLC.
2013
fumonisins B1 and B2; Mycotoxin binders; organically modified clays; Adsorption; Aluminum Silicates; Animal Feed; Clay; Food Contamination; Fumonisins; Zea mays; Food Science; Pollution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/363114
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact