Real-time assessment of the state of a volcano plays a key role for civil protection purposes. Unfortunately, because of the coupling of highly nonlinear and partially known complex volcanic processes, and the intrinsic uncertainties in measured parameters, the state of a volcano needs to be expressed in probabilistic terms, thus making any rapid assessment sometimes impractical. With the aim of aiding on-duty personnel in volcano-monitoring roles, we present an expert system approach to automatically estimate the ongoing state of a volcano from all available measurements. The system consists of a probabilistic model that encodes the conditional dependencies between measurements and volcanic states in a directed acyclic graph and renders an estimation of the probability distribution of the feasible volcanic states. We test the model with Mount Etna (Italy) as a case study by considering a long record of multivariate data. Results indicate that the proposed model is effective for early warning and has considerable potential for decision-making purposes.
A multivariate probabilistic graphical model for real-time volcano monitoring on Mount Etna
Cannata, AndreaSecondo
;Cassisi, Carmelo;Prestifilippo, Michele;GAMBINO, SALVATORE
2017-01-01
Abstract
Real-time assessment of the state of a volcano plays a key role for civil protection purposes. Unfortunately, because of the coupling of highly nonlinear and partially known complex volcanic processes, and the intrinsic uncertainties in measured parameters, the state of a volcano needs to be expressed in probabilistic terms, thus making any rapid assessment sometimes impractical. With the aim of aiding on-duty personnel in volcano-monitoring roles, we present an expert system approach to automatically estimate the ongoing state of a volcano from all available measurements. The system consists of a probabilistic model that encodes the conditional dependencies between measurements and volcanic states in a directed acyclic graph and renders an estimation of the probability distribution of the feasible volcanic states. We test the model with Mount Etna (Italy) as a case study by considering a long record of multivariate data. Results indicate that the proposed model is effective for early warning and has considerable potential for decision-making purposes.File | Dimensione | Formato | |
---|---|---|---|
43_Cannavo_et_al., 2017 JGR.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.