New biodegradable biomaterials are attracting a huge interest as alternative to conventional polymers used in the field of drug delivery. In this work, we evaluated the ability of new biocompatible and biodegradable polyesters to form nanoparticles (NPs), and tested their potential carrier properties for controlled release of hydrophilic or lipophilic compounds. Multiblock copolymers derived from poly(R-3-hydroxybutyrate) and poly(1,4-butylene adipate) by microwave-assisted transesterification, having different chemical and physicochemical properties were tested. Nanoprecipitation was applied to obtain NPs with a homogenous size distribution. Oil Red O and calcein were encapsulated as lipophilic and hydrophilic probes, evaluating NP mean size and size polydispersity, surface charge, encapsulation efficiency, and release profile. The release curves were fitted into mathematical models to investigate the release mechanism. NPs stability appeared to be strictly related to storage conditions. The NPs were also successfully autoclaved and their mucoadhesive behavior was assessed by a “mucin-particle method.” © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47233.
Technology assessment of new biodegradable poly(R-3-hydroxybutyrate-co-1,4-butylene adipate) copolymers for drug delivery
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Musumeci, TeresaWriting – Original Draft Preparation
;Cupri, Sarha;Bonaccorso, Angela;Ballistreri, Alberto;Pignatello, Rosario
						
						
						
							Writing – Review & Editing
	
		
		
	
			2019-01-01
Abstract
New biodegradable biomaterials are attracting a huge interest as alternative to conventional polymers used in the field of drug delivery. In this work, we evaluated the ability of new biocompatible and biodegradable polyesters to form nanoparticles (NPs), and tested their potential carrier properties for controlled release of hydrophilic or lipophilic compounds. Multiblock copolymers derived from poly(R-3-hydroxybutyrate) and poly(1,4-butylene adipate) by microwave-assisted transesterification, having different chemical and physicochemical properties were tested. Nanoprecipitation was applied to obtain NPs with a homogenous size distribution. Oil Red O and calcein were encapsulated as lipophilic and hydrophilic probes, evaluating NP mean size and size polydispersity, surface charge, encapsulation efficiency, and release profile. The release curves were fitted into mathematical models to investigate the release mechanism. NPs stability appeared to be strictly related to storage conditions. The NPs were also successfully autoclaved and their mucoadhesive behavior was assessed by a “mucin-particle method.” © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47233.| File | Dimensione | Formato | |
|---|---|---|---|
| new biodegradable poly(R-3-hydroxybutyrate-co-1,4-butylene adipate).pdf solo gestori archivio 
											Tipologia:
											Versione Editoriale (PDF)
										 
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.71 MB
									 
										Formato
										Adobe PDF
									 | 1.71 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


