In this work Nexar®-based nanocomposite membranes, consisting of tert-butyl styrene end blocks, hydrogenated isoprene inner blocks and a middle block that is selectively and randomly sulfonated, were prepared by dispersing bismuth oxide (Bi2O3) nanoparticles inside. The aim was to evaluate their adsorption properties and photocatalytic activity. The chemical, structural and morphological properties of the produced materials were characterized by scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS) and thermogravimetric analysis (TGA). We found that a partial reduction of Bi2O3 to metallic Bi takes place during the nanocomposite preparation. The presence of the bismuth-based nanomaterials changes the light absorbance of the polymer affecting positively the dye removal ablity of the polymeric nanocomposite. The removal/degradation properties of the membranes were investigated by measuring the degradation of two dyes, methylene blue (MB) and methyl orange (MO), under UV/visible or blue light illumination. The UV–vis light irradiation increases the MB removal for both the membranes, due to an enhanced adsorption effect, while blue light irradiation induces a similar enhancement only for the filler-free membrane. For the nanocomposite membrane containing Bi2O3 (s-PBC-BO) we observe the highest efficiency in the removal of MO under blue light irradiation due to a combined effect of light absorption by both the nanocomposite and the dye.

Bi2O3/Nexar® polymer nanocomposite membranes for azo dyes removal by UV–vis or visible light irradiation

Filice, S.;Scarangella, A.;Compagnini, G.;
2019-01-01

Abstract

In this work Nexar®-based nanocomposite membranes, consisting of tert-butyl styrene end blocks, hydrogenated isoprene inner blocks and a middle block that is selectively and randomly sulfonated, were prepared by dispersing bismuth oxide (Bi2O3) nanoparticles inside. The aim was to evaluate their adsorption properties and photocatalytic activity. The chemical, structural and morphological properties of the produced materials were characterized by scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS) and thermogravimetric analysis (TGA). We found that a partial reduction of Bi2O3 to metallic Bi takes place during the nanocomposite preparation. The presence of the bismuth-based nanomaterials changes the light absorbance of the polymer affecting positively the dye removal ablity of the polymeric nanocomposite. The removal/degradation properties of the membranes were investigated by measuring the degradation of two dyes, methylene blue (MB) and methyl orange (MO), under UV/visible or blue light illumination. The UV–vis light irradiation increases the MB removal for both the membranes, due to an enhanced adsorption effect, while blue light irradiation induces a similar enhancement only for the filler-free membrane. For the nanocomposite membrane containing Bi2O3 (s-PBC-BO) we observe the highest efficiency in the removal of MO under blue light irradiation due to a combined effect of light absorption by both the nanocomposite and the dye.
2019
Bi2O3; Bismuth; Nanocomposite membrane; Photocatalysis; Sulfonated block copolymer; Catalysis; Chemistry (all)
File in questo prodotto:
File Dimensione Formato  
Bi2O3-Nexar (R) polymer nanocomposite membranes.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 788.07 kB
Formato Adobe PDF
788.07 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/364098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact