We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.

Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations

Mosconi, Sunra;
2019-01-01

Abstract

We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.
2019
Anisotropic equations Finite speed of propagation L∞ -estimates Non-uniqueness
File in questo prodotto:
File Dimensione Formato  
Anisotropic Sobolev.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 522.82 kB
Formato Adobe PDF
522.82 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/364985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact