Let $Omegasubseteq {f R}^n$ be a bounded domain ($ngeq 2$). In this paper, we prove that if $partialOmega$ has a non-negative mean curvature, or $Omega$ is an annulus, the, for each Lipschitzian function $f:{f R} o {f R}$, with $sup_{\xiin {f R}}int_0^{\xi}f(t)dt=0$, the problem $$cases{-Delta u = f(u) & in $Omega$cr & cr u=0 & on $partialOmega$cr}$$ has no non-zero classical solutions.
Titolo: | Non-existence results for an eigenvalue problem involving Lipschitzian nonlinearities with non-positive primitive | |
Autori interni: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Abstract: | Let $Omegasubseteq {f R}^n$ be a bounded domain ($ngeq 2$). In this paper, we prove that if $partialOmega$ has a non-negative mean curvature, or $Omega$ is an annulus, the, for each Lipschitzian function $f:{f R} o {f R}$, with $sup_{\xiin {f R}}int_0^{\xi}f(t)dt=0$, the problem $$cases{-Delta u = f(u) & in $Omega$cr & cr u=0 & on $partialOmega$cr}$$ has no non-zero classical solutions. | |
Handle: | http://hdl.handle.net/20.500.11769/365569 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Goubet_et_al-2019-Bulletin_of_the_London_Mathematical_Society (2).pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.