Let $Omegasubseteq {f R}^n$ be a bounded domain ($ngeq 2$). In this paper, we prove that if $partialOmega$ has a non-negative mean curvature, or $Omega$ is an annulus, the, for each Lipschitzian function $f:{f R} o {f R}$, with $sup_{\xiin {f R}}int_0^{\xi}f(t)dt=0$, the problem $$cases{-Delta u = f(u) & in $Omega$cr & cr u=0 & on $partialOmega$cr}$$ has no non-zero classical solutions.

Non-existence results for an eigenvalue problem involving Lipschitzian nonlinearities with non-positive primitive

B. Ricceri
2019

Abstract

Let $Omegasubseteq {f R}^n$ be a bounded domain ($ngeq 2$). In this paper, we prove that if $partialOmega$ has a non-negative mean curvature, or $Omega$ is an annulus, the, for each Lipschitzian function $f:{f R} o {f R}$, with $sup_{\xiin {f R}}int_0^{\xi}f(t)dt=0$, the problem $$cases{-Delta u = f(u) & in $Omega$cr & cr u=0 & on $partialOmega$cr}$$ has no non-zero classical solutions.
File in questo prodotto:
File Dimensione Formato  
Goubet_et_al-2019-Bulletin_of_the_London_Mathematical_Society (2).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Dimensione 175.41 kB
Formato Adobe PDF
175.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/365569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact