We use two main techniques, namely, residuation and separators of points, to show that the Hilbert function of a certain fat point set supported on a grid complete intersection is the same as the Hilbert function of a reduced set of points called a partial intersection. As an application, we answer a question of TohÇŽneanu and Van Tuyl which relates the minimum Hamming distance of a special linear code and the minimum socle degree of the associated fat point set. (on line May 2019)
Titolo: | Fat Points, partial intersections and Hamming distance |
Autori interni: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11769/365572 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.