A space is said to be "almost discretely Lindelöf" if every discrete subset can be covered by a Lindelöf subspace. Juhász, Tkachuk and Wilson asked whether every almost discretely Lindelöf first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under 2<= (which is a consequence of Martin's Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhász, Soukup and Szentmiklóssy. We conclude with a few related results and questions.
Titolo: | On the cardinality of almost discretely Lindelof spaces |
Autori interni: | SPADARO, SANTI DOMENICO (Corresponding) |
Data di pubblicazione: | 2018 |
Rivista: | |
Abstract: | A space is said to be "almost discretely Lindelöf" if every discrete subset can be covered by a Lindelöf subspace. Juhász, Tkachuk and Wilson asked whether every almost discretely Lindelöf first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under 2<= (which is a consequence of Martin's Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhász, Soukup and Szentmiklóssy. We conclude with a few related results and questions. |
Handle: | http://hdl.handle.net/20.500.11769/365611 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ADLFinale.pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.