We prove upper bounds for the spread, the Lindelöf number and the weak Lindelöf number of the Gδ-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juhász and van Mill regarding the cardinality of a σ-countably tight homogeneous compactum.
Titolo: | Cardinal invariants for the Gδ delta topology |
Autori interni: | SPADARO, SANTI DOMENICO (Corresponding) |
Data di pubblicazione: | 2019 |
Rivista: | |
Abstract: | We prove upper bounds for the spread, the Lindelöf number and the weak Lindelöf number of the Gδ-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juhász and van Mill regarding the cardinality of a σ-countably tight homogeneous compactum. |
Handle: | http://hdl.handle.net/20.500.11769/365614 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
CardinalInvariantsFinale.pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.