The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martínez-Ruiz, Ramírez-Páramo and Romero-Morales, we prove that the cardinal inequality |X|≤g(X)L(X)⋅F(X) holds for every Hausdorff space X, where L(X) is the Lindelöf number of X and F(X) is the supremum of the cardinalities of the free sequences in X.
Titolo: | On closures of discrete sets |
Autori interni: | |
Data di pubblicazione: | Being printed |
Rivista: | |
Abstract: | The depth of a topological space X (g(X)) is defined as the supremum of the cardinalities of closures of discrete subsets of X. Solving a problem of Martínez-Ruiz, Ramírez-Páramo and Romero-Morales, we prove that the cardinal inequality |X|≤g(X)L(X)⋅F(X) holds for every Hausdorff space X, where L(X) is the Lindelöf number of X and F(X) is the supremum of the cardinalities of the free sequences in X. |
Handle: | http://hdl.handle.net/20.500.11769/365661 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.