Thermalization and collective flow of charm (c) and bottom (b) quarks in ultrarelativistic heavy-ion collisions are evaluated based on elastic parton rescattering in an expanding quark-gluon plasma (QGP). We show that resonant interactions in a strongly interacting QGP (sQGP), as well as parton coalescence, can play an essential role in the interpretation of recent data from the BNL Relativistic Heavy-Ion Collider (RHIC), and thus illuminate the nature of the sQGP and its hadronization. Our main assumption, motivated by recent findings in lattice quantum chromodynamics, is the existence of D- and B-meson states in the sQGP, providing resonant cross sections for heavy quarks. Pertinent drag and diffusion coefficients are implemented into a relativistic Langevin simulation to compute transverse-momentum spectra and azimuthal asymmetries (v(2)) of b- and c-quarks in Au-Au collisions at RHIC. After hadronization into D- and B-mesons using quark coalescence and fragmentation, associated electron-decay spectra and v(2) are compared to recent RHIC data. Our results suggest a reevaluation of radiative and elastic quark energy-loss mechanisms in the sQGP.

Heavy-quark probes of the quark-gluon plasma and interpretation of recent data taken at the BNL Relativistic Heavy Ion Collider

GRECO, VINCENZO;
2006-01-01

Abstract

Thermalization and collective flow of charm (c) and bottom (b) quarks in ultrarelativistic heavy-ion collisions are evaluated based on elastic parton rescattering in an expanding quark-gluon plasma (QGP). We show that resonant interactions in a strongly interacting QGP (sQGP), as well as parton coalescence, can play an essential role in the interpretation of recent data from the BNL Relativistic Heavy-Ion Collider (RHIC), and thus illuminate the nature of the sQGP and its hadronization. Our main assumption, motivated by recent findings in lattice quantum chromodynamics, is the existence of D- and B-meson states in the sQGP, providing resonant cross sections for heavy quarks. Pertinent drag and diffusion coefficients are implemented into a relativistic Langevin simulation to compute transverse-momentum spectra and azimuthal asymmetries (v(2)) of b- and c-quarks in Au-Au collisions at RHIC. After hadronization into D- and B-mesons using quark coalescence and fragmentation, associated electron-decay spectra and v(2) are compared to recent RHIC data. Our results suggest a reevaluation of radiative and elastic quark energy-loss mechanisms in the sQGP.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/36819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 350
  • ???jsp.display-item.citation.isi??? 312
social impact