This study documents the compositional variations of phenocrysts from a basaltic trachyandesitic sill emplaced in the Valle del Bove at Mt. Etna volcano (Sicily, Italy). The physicochemical conditions driving the crystallization and emplacement of the sill magma have been reconstructed by barometers, oxygen barometers, thermometers and hygrometers based on clinopyroxene, feldspar (plagioclase + K-feldspar) and titanomagnetite. Clinopyroxene is the liquidus phase, recording decompression and cooling paths decreasing from 200 to 0.1 MPa and from 1050 to 940 ◦ C, respectively. Plagioclase and K-feldspar cosaturate the melt in a lower temperature interval of ~1000–870 ◦ C. Cation exchanges in clinopyroxene (Mg-Fe) and feldspar (Ca-Na) indicate that magma ascent is accompanied by progressive H 2 O exsolution (up to ~2.2 wt. %) under more oxidizing conditions (up to ∆NNO + 0.5). Geospeedometric constraints provided by Ti–Al–Mg cation redistributions in titanomagnetite indicate that the travel time (up to 23 h) and ascent velocity of magma (up to 0.78 m/s) are consistent with those inferred for other eruptions at Mt. Etna. These kinetic effects are ascribed to a degassing-induced undercooling path caused principally by H 2 O loss at shallow crustal conditions. Rare earth element (REE) modeling based on the lattice strain theory supports the hypothesis that the sill magma formed from primitive basaltic compositions after clinopyroxene (≤41%) and plagioclase (≤12%) fractionation. Early formation of clinopyroxene at depth is the main controlling factor for the REE signature, whereas subsequent degassing at low pressure conditions enlarges the stability field of plagioclase causing trace element enrichments during eruption towards the surface.

Modeling the crystallization and emplacement conditions of a basaltic trachyandesitic sill at Mt. Etna volcano

Ferlito C.
Membro del Collaboration Group
2019-01-01

Abstract

This study documents the compositional variations of phenocrysts from a basaltic trachyandesitic sill emplaced in the Valle del Bove at Mt. Etna volcano (Sicily, Italy). The physicochemical conditions driving the crystallization and emplacement of the sill magma have been reconstructed by barometers, oxygen barometers, thermometers and hygrometers based on clinopyroxene, feldspar (plagioclase + K-feldspar) and titanomagnetite. Clinopyroxene is the liquidus phase, recording decompression and cooling paths decreasing from 200 to 0.1 MPa and from 1050 to 940 ◦ C, respectively. Plagioclase and K-feldspar cosaturate the melt in a lower temperature interval of ~1000–870 ◦ C. Cation exchanges in clinopyroxene (Mg-Fe) and feldspar (Ca-Na) indicate that magma ascent is accompanied by progressive H 2 O exsolution (up to ~2.2 wt. %) under more oxidizing conditions (up to ∆NNO + 0.5). Geospeedometric constraints provided by Ti–Al–Mg cation redistributions in titanomagnetite indicate that the travel time (up to 23 h) and ascent velocity of magma (up to 0.78 m/s) are consistent with those inferred for other eruptions at Mt. Etna. These kinetic effects are ascribed to a degassing-induced undercooling path caused principally by H 2 O loss at shallow crustal conditions. Rare earth element (REE) modeling based on the lattice strain theory supports the hypothesis that the sill magma formed from primitive basaltic compositions after clinopyroxene (≤41%) and plagioclase (≤12%) fractionation. Early formation of clinopyroxene at depth is the main controlling factor for the REE signature, whereas subsequent degassing at low pressure conditions enlarges the stability field of plagioclase causing trace element enrichments during eruption towards the surface.
2019
Etna volcano; Magma decompression and degassing; Mt; REE fractionation; Sill magma
File in questo prodotto:
File Dimensione Formato  
nazzari 2019.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 6.56 MB
Formato Adobe PDF
6.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/369124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact