Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling strengths are comparable to subsystem energies, and new exotic phenomena like quantum phase transitions and ground-state entanglement occur. While experiments so far provided only spectroscopic evidence of ultrastrong coupling, we propose a new dynamical protocol for detecting virtual photon pairs in the dressed eigenstates. This is the fingerprint of the violated conservation of the number of excitations, which heralds the symmetry broken by ultrastrong coupling. We show that in flux-based superconducting architectures this photon production channel can be coherently amplified by Stimulated Raman Adiabatic Passage, providing a unique tool for an unambiguous dynamical detection of ultrastrong coupling in present day hardware. This protocol could be a benchmark for control of the dynamics of ultrastrong coupling architectures, in view of applications to quantum information and microwave quantum photonics.

Ultrastrong coupling probed by Coherent Population Transfer

Falci G.;Ridolfo A.;DI STEFANO, PIETRO GIUSEPPE;Paladino E.
2019

Abstract

Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling strengths are comparable to subsystem energies, and new exotic phenomena like quantum phase transitions and ground-state entanglement occur. While experiments so far provided only spectroscopic evidence of ultrastrong coupling, we propose a new dynamical protocol for detecting virtual photon pairs in the dressed eigenstates. This is the fingerprint of the violated conservation of the number of excitations, which heralds the symmetry broken by ultrastrong coupling. We show that in flux-based superconducting architectures this photon production channel can be coherently amplified by Stimulated Raman Adiabatic Passage, providing a unique tool for an unambiguous dynamical detection of ultrastrong coupling in present day hardware. This protocol could be a benchmark for control of the dynamics of ultrastrong coupling architectures, in view of applications to quantum information and microwave quantum photonics.
File in questo prodotto:
File Dimensione Formato  
2019-Scientific Reports.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/369287
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact