Gold nanostructures absorb visible light and show localized surface plasmon resonance bands in the visible region. Semiconducting ZnO nanostructures are excellent for ultraviolet detection, thanks to their wide band gap, large free exciton binding energy, and high electron mobility. Therefore, the coupling of gold and ZnO nanostructures represents the best-suited way to boost photodetection. With the above perspective, we report on the high photocatalytic activity of some Au_ZnO core−shell nanoparticles (NPs) recently prepared by a one-pot synthesis in which a [zinc citrate]− complex acted as the ZnO precursor, a reducing agent for Au3+, and a capping anion for the obtained Au NPs. The overall nanostructures proved to be Au(111) NPs surrounded by a thin layer of [zinc citrate]− that evolved to Au_ZnO core−shell nanostructures. Worthy of note, with this photocatalyst, sun light efficiently decomposes a standard methylene blue solution according to ISO 10678:2010. We rationalized photodetection, reaction rate, and quantum efficiency.
Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core−Shell Nanoparticles Prepared by a One-Pot Synthesis
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Luca SpitaleriMembro del Collaboration Group
;Annalinda ContinoMembro del Collaboration Group
;Giuseppe MaccarroneMembro del Collaboration Group
;ALBERTI, AlessandraMembro del Collaboration Group
;Antonino Gulino
						
						
						
							Supervision
	
		
		
	
			2019-01-01
Abstract
Gold nanostructures absorb visible light and show localized surface plasmon resonance bands in the visible region. Semiconducting ZnO nanostructures are excellent for ultraviolet detection, thanks to their wide band gap, large free exciton binding energy, and high electron mobility. Therefore, the coupling of gold and ZnO nanostructures represents the best-suited way to boost photodetection. With the above perspective, we report on the high photocatalytic activity of some Au_ZnO core−shell nanoparticles (NPs) recently prepared by a one-pot synthesis in which a [zinc citrate]− complex acted as the ZnO precursor, a reducing agent for Au3+, and a capping anion for the obtained Au NPs. The overall nanostructures proved to be Au(111) NPs surrounded by a thin layer of [zinc citrate]− that evolved to Au_ZnO core−shell nanostructures. Worthy of note, with this photocatalyst, sun light efficiently decomposes a standard methylene blue solution according to ISO 10678:2010. We rationalized photodetection, reaction rate, and quantum efficiency.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											2019ACSomega.9b01850.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo principale
										 
									
									
									
										
											Tipologia:
											Versione Editoriale (PDF)
										 
									
									
									
									
									
										Dimensione
										2.53 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.53 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


