Tree rooting strategies are driven by external and internal factors such as climate conditions (rain frequency, wind direction), soil structure and crop type. In order to ensure water efficiency for irrigated crops, it is essential to know how each crop adapts its rooting strategy. We couple Mise-a-la-masse (MALM) with Electrical Resistivity Tomography (ERT) for investigating orange tree roots undergoing different irrigation strategies (Partial Root-zone Drying -or PRD - versus Full Irrigation). This is a totally novel approach giving an overall picture of roots structure and functioning in the subsoil. Our results show clear differences of rooting extent between different irrigation strategies, and identify privileged direction of root development due to distinct RWU patterns. These results are corroborated also by seasonal monitoring of evapotranspiration (ET) and soil water content (SWC), which exhibit very large differences in the soil water distribution in space and time for the trees undergoing different irrigation schedules.

Assessing the extent of citrus trees root apparatus under deficit irrigation via multi-method geo-electrical imaging

Vanella D.;Consoli S.;
2019-01-01

Abstract

Tree rooting strategies are driven by external and internal factors such as climate conditions (rain frequency, wind direction), soil structure and crop type. In order to ensure water efficiency for irrigated crops, it is essential to know how each crop adapts its rooting strategy. We couple Mise-a-la-masse (MALM) with Electrical Resistivity Tomography (ERT) for investigating orange tree roots undergoing different irrigation strategies (Partial Root-zone Drying -or PRD - versus Full Irrigation). This is a totally novel approach giving an overall picture of roots structure and functioning in the subsoil. Our results show clear differences of rooting extent between different irrigation strategies, and identify privileged direction of root development due to distinct RWU patterns. These results are corroborated also by seasonal monitoring of evapotranspiration (ET) and soil water content (SWC), which exhibit very large differences in the soil water distribution in space and time for the trees undergoing different irrigation schedules.
File in questo prodotto:
File Dimensione Formato  
Mary et al 2019.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/371442
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 28
social impact