Communicating Finite State Machines (CFSMs) are an established model for describing and analysing distributed systems whose concurrently running components communicate via FIFO-channels. Systems of CESMs are usually considered as closed systems which do not provide access points for communication with the environment. In our study we relax this view such that certain components of a CFSM system can be looked at as describing the behaviour of the environment interacting with the system. They are considered as interfaces and if two systems posses compatible interfaces (according to a natural notion of compatibility) they can be connected. We propose a novel connection mechanism such that interface CFSMs are replaced by automatically generated "gateway" CFSMs, enabling messages to be exchanged between the systems. As a crucial outcome of our approach we prove that, under mild assumptions, if CFSM systems are connected in such a way a number of important communicating properties is preserved: deadlock-freeness, strong deadlock-freeness, orphan-message freeness, freeness of unspecified receptions, and progress. The communication properties we consider are those enjoyed by CFSM systems obtained by end-point projections of certain global type formalisms used in the field of asynchronous multiparty session types. To this end we introduce a parametric syntax to compose global types via interface roles. As a consequence of our preservation results we get for free that composed projected systems enjoy the communication properties. (C) 2019 Elsevier Inc. All rights reserved.

Connecting open systems of communicating finite state machines

Barbanera, Franco
Membro del Collaboration Group
;
2019-01-01

Abstract

Communicating Finite State Machines (CFSMs) are an established model for describing and analysing distributed systems whose concurrently running components communicate via FIFO-channels. Systems of CESMs are usually considered as closed systems which do not provide access points for communication with the environment. In our study we relax this view such that certain components of a CFSM system can be looked at as describing the behaviour of the environment interacting with the system. They are considered as interfaces and if two systems posses compatible interfaces (according to a natural notion of compatibility) they can be connected. We propose a novel connection mechanism such that interface CFSMs are replaced by automatically generated "gateway" CFSMs, enabling messages to be exchanged between the systems. As a crucial outcome of our approach we prove that, under mild assumptions, if CFSM systems are connected in such a way a number of important communicating properties is preserved: deadlock-freeness, strong deadlock-freeness, orphan-message freeness, freeness of unspecified receptions, and progress. The communication properties we consider are those enjoyed by CFSM systems obtained by end-point projections of certain global type formalisms used in the field of asynchronous multiparty session types. To this end we introduce a parametric syntax to compose global types via interface roles. As a consequence of our preservation results we get for free that composed projected systems enjoy the communication properties. (C) 2019 Elsevier Inc. All rights reserved.
2019
Communicating finite state machine; Communicating system; Composition of open systems; Communication properties; Global type with interface roles
File in questo prodotto:
File Dimensione Formato  
communicating finite state machines.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 770.18 kB
Formato Adobe PDF
770.18 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/372105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact