Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individual´s genome derived from ancestry, pigs with at least 70% of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (FST 0.125) and the FIS value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.

Molecular characterization and genetic structure of the Nero Siciliano pig breed

CRISCIONE A;MARLETTA, DONATA;BORDONARO, Salvatore
2010

Abstract

Nero Siciliano is an autochthonous pig breed that is reared mainly in semi-extensive systems in northeastern Sicily. Despite its economic importance and well-appreciated meat products, this breed is currently endangered. Consequently, an analysis of intra-breed variability is a fundamental step in preserving this genetic resource and its breeding system. In this work, we used 25 microsatellite markers to examine the genetic composition of 147 unrelated Nero Siciliano pigs. The total number of alleles detected (249, 9.96 per locus) and the expected heterozygosity (0.708) indicated that this breed had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups into which the sample could be partitioned was nine. Based on the proportion of each individual´s genome derived from ancestry, pigs with at least 70% of their genome belonging to one cluster were assigned to that cluster. The cluster size ranged from 7 to 17 (n = 108). Genetic variability in this sub-population was slightly lower than in the whole sample, genetic differentiation among clusters was moderate (FST 0.125) and the FIS value was 0.011. NeighborNet and correspondence analysis revealed two clusters as the most divergent. Molecular coancestry analysis confirmed the good within-breed variability and highlighted the clusters that retained the highest genetic diversity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/3722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact