The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution (u; ) becomes regular provided that (∇hu;∇h) ∈ L 8 3 (0; T; B 1 1;1(R3)). Our results improve and extend the well-known results of Fang-Qian [13] for the Navier-Stokes equations.

A REGULARITY CRITERION TO THE 3D BOUSSINESQ EQUATIONS

Maria Alessandra RAGUSA
2019-01-01

Abstract

The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution (u; ) becomes regular provided that (∇hu;∇h) ∈ L 8 3 (0; T; B 1 1;1(R3)). Our results improve and extend the well-known results of Fang-Qian [13] for the Navier-Stokes equations.
File in questo prodotto:
File Dimensione Formato  
SEMR-p1795-1804.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 160.3 kB
Formato Adobe PDF
160.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/372845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact