This paper describes the development of a novel low-cost Rayleigh Surface Acoustic Wave Resonator (SAWR) device coated with a graphene layer that is capable of detecting PPM levels of NO2 in air. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh SAWRs arranged in a dual oscillator configuration; where one resonator is coated with gas-sensitive graphene, and the other left uncoated to act as a reference. An array of NMP-dispersed exfoliated reduced graphene oxide dots was deposited in the active area inside the SAWR IDTs by a non-contacting, micro ink-jet printing system. An automated Mass Flow Controller system has been developed that delivers gases to the SAWR sensors with circuitry for excitation, amplification, buffering and signal read-out. This SAW-based graphene sensor has sensitivity to NO2 of ca. 25 Hz/ppm and could be implemented in a low-power low-cost gas sensor

Graphene-coated Rayleigh SAW Resonators for NO2 Detection

Torrisi F;
2014-01-01

Abstract

This paper describes the development of a novel low-cost Rayleigh Surface Acoustic Wave Resonator (SAWR) device coated with a graphene layer that is capable of detecting PPM levels of NO2 in air. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh SAWRs arranged in a dual oscillator configuration; where one resonator is coated with gas-sensitive graphene, and the other left uncoated to act as a reference. An array of NMP-dispersed exfoliated reduced graphene oxide dots was deposited in the active area inside the SAWR IDTs by a non-contacting, micro ink-jet printing system. An automated Mass Flow Controller system has been developed that delivers gases to the SAWR sensors with circuitry for excitation, amplification, buffering and signal read-out. This SAW-based graphene sensor has sensitivity to NO2 of ca. 25 Hz/ppm and could be implemented in a low-power low-cost gas sensor
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1877705814024436-main.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 858.59 kB
Formato Adobe PDF
858.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/373336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact