Fractional-order calculus has been used for generalizing many modern and classical control theories including the well establish PID paradigm. The obtained controllers, of non-integer order, must be approximated with high order integer ones, in order to be realized. Successively, analog or digital implementations are used for the real world applications. This approach offers the hip to a classical criticism to fractional calculus. Why design a fractional-order system, which is usually of low order, if you need a high order system to implement it? In order to face this problem, in this paper, a fractional-order capacitor, more specifically a Constant Phase Device, is applied for implementing a first order fractional transfer function. Due to the intrinsic nature of the realized device, just one capacitor is needed for the implementation, avoiding therefore the need of high order RC approximation. Furthermore a fractional-order Wien oscillator and a chaotic Duffing circuit are presented confirming the potentiality of the proposed device in realizing fractional order circuits.

### Realization of fractional order circuits by a Constant Phase Element

#### Abstract

Fractional-order calculus has been used for generalizing many modern and classical control theories including the well establish PID paradigm. The obtained controllers, of non-integer order, must be approximated with high order integer ones, in order to be realized. Successively, analog or digital implementations are used for the real world applications. This approach offers the hip to a classical criticism to fractional calculus. Why design a fractional-order system, which is usually of low order, if you need a high order system to implement it? In order to face this problem, in this paper, a fractional-order capacitor, more specifically a Constant Phase Device, is applied for implementing a first order fractional transfer function. Due to the intrinsic nature of the realized device, just one capacitor is needed for the implementation, avoiding therefore the need of high order RC approximation. Furthermore a fractional-order Wien oscillator and a chaotic Duffing circuit are presented confirming the potentiality of the proposed device in realizing fractional order circuits.
##### Scheda breve Scheda completa Scheda completa (DC)
2020
File in questo prodotto:
File
1-s2.0-S0947358019303607-main (1).pdf

solo gestori archivio

Tipologia: Documento in Pre-print
Dimensione 3.57 MB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/20.500.11769/373727`