The control of self-assembly and the related interactions among nanoparticles (NPs) at liquid surfaces and interfaces represents a stimulating experimental challenge to fully understand the behaviour of nano-colloids confined in a 2D asymmetric environment, in turn prompting the building of novel NP-based functional monolayers. Here, we first investigate the structural evolution of a model mixed surfactant/NP monolayer as a function of the surfactant/NP bulk ratio finding that, at ratios lower than 20, the adsorption at the air/water interface of surfactant-decorated NPs is dominant. We then employed these 2D nano-colloidal monolayers as model systems for grazing incidence small angle X-ray scattering measurements, performed using synchrotron radiation, while compressing the monolayers in a Langmuir trough. The simultaneous determination of the compression work and the related reduction of the inter-particle distance at the interface enabled, for the first time, the quantitative characterization of the forces acting between adsorbed NPs, as well as their dispersion law with the inter-particle distance. Distinct surfactant reorganization processes are proposed to interpret the measured forces and the characteristic inter-particle distances

In situ structure and force characterization of 2D nano-colloids at the air/water interface

Giovanni Li-Destri
;
Roberta Ruffino;Nunzio Tuccitto;Giovanni Marletta
2019-01-01

Abstract

The control of self-assembly and the related interactions among nanoparticles (NPs) at liquid surfaces and interfaces represents a stimulating experimental challenge to fully understand the behaviour of nano-colloids confined in a 2D asymmetric environment, in turn prompting the building of novel NP-based functional monolayers. Here, we first investigate the structural evolution of a model mixed surfactant/NP monolayer as a function of the surfactant/NP bulk ratio finding that, at ratios lower than 20, the adsorption at the air/water interface of surfactant-decorated NPs is dominant. We then employed these 2D nano-colloidal monolayers as model systems for grazing incidence small angle X-ray scattering measurements, performed using synchrotron radiation, while compressing the monolayers in a Langmuir trough. The simultaneous determination of the compression work and the related reduction of the inter-particle distance at the interface enabled, for the first time, the quantitative characterization of the forces acting between adsorbed NPs, as well as their dispersion law with the inter-particle distance. Distinct surfactant reorganization processes are proposed to interpret the measured forces and the characteristic inter-particle distances
File in questo prodotto:
File Dimensione Formato  
In situ structure and force characterization of 2D nano-colloids.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/378749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact