A Z-product is a modified lexicographic product of three total preorders such that the middle factor is the chain of integers equipped with a shift operator. A Z-line is a Z-product having two linear orders as its extreme factors. We show that an arbitrary semiorder embeds into a Z-product having the transitive closure as its first factor, and a sliced trace as its last factor. Sliced traces are modified forms of traces induced by suitable integer-valued maps, and their definition is reminiscent of constructions related to the Scott–Suppes representation of a semiorder. Further, we show that Z-lines are universal semiorders, in the sense that they are semiorders, and each semiorder embeds into a Z-line. As a corollary of this description, we derive the well known fact that the dimension of a strict semiorder is at most three.

Universal semiorders

GIARLOTTA, Alfio;
2016-01-01

Abstract

A Z-product is a modified lexicographic product of three total preorders such that the middle factor is the chain of integers equipped with a shift operator. A Z-line is a Z-product having two linear orders as its extreme factors. We show that an arbitrary semiorder embeds into a Z-product having the transitive closure as its first factor, and a sliced trace as its last factor. Sliced traces are modified forms of traces induced by suitable integer-valued maps, and their definition is reminiscent of constructions related to the Scott–Suppes representation of a semiorder. Further, we show that Z-lines are universal semiorders, in the sense that they are semiorders, and each semiorder embeds into a Z-line. As a corollary of this description, we derive the well known fact that the dimension of a strict semiorder is at most three.
2016
Semiorder; Interval order; Trace; Sliced trace; Z-product; Z-line; Scott–Suppes representation
File in questo prodotto:
File Dimensione Formato  
universal semiorders.pdf

solo gestori archivio

Licenza: Non specificato
Dimensione 535.09 kB
Formato Adobe PDF
535.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/38034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact