It is well known that, in general, multiplication by an ideal I does not commute with the intersection of a family of ideals, but that this fact holds if I is flat and the family is finite. We generalize this result by showing that finite families of ideals can be replaced by compact subspaces of a natural topological space, and that ideals can be replaced by submodules of an epimorphic extension of a base ring. As a particular case, we give a new proof of a conjecture by Glaz and Vasconcelos.
Titolo: | Topology, intersections and flat modules | |
Autori interni: | ||
Data di pubblicazione: | 2016 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.11769/383244 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.