Let K be a field, and let A be a subring of K. We consider properties and applications of a compact, Hausdorff topology called the "ultrafilter topology" defined on the space Zar(K pipe A) of all valuation domains having K as quotient field and containing A. We show that the ultrafilter topology coincides with the constructible topology on the abstract Riemann-Zariski surface Zar(K pipe A). We extend results regarding distinguished spectral topologies on spaces of valuation domains. © 2013 Copyright Taylor and Francis Group, LLC.
Titolo: | Ultrafilter and Constructible Topologies on Spaces of Valuation Domains | |
Autori interni: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.11769/383258 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.