We report on the heterogeneous nucleation of catalyst-free InAs nanowires on Si(111) substrates by chemical beam epitaxy. We show that nanowire nucleation is enhanced by sputtering the silicon substrate with energetic particles. We argue that particle bombardment introduces lattice defects on the silicon surface that serve as preferential nucleation sites. The formation of these nucleation sites can be controlled by the sputtering parameters, allowing the control of nanowire density in a wide range. Nanowire nucleation is accompanied by unwanted parasitic islands, but careful choice of annealing and growth temperature allows us to strongly reduce the relative density of these islands and to realize samples with high nanowire yield.

Heterogeneous nucleation of catalyst-free InAs nanowires on silicon

Battiato S.;
2017

Abstract

We report on the heterogeneous nucleation of catalyst-free InAs nanowires on Si(111) substrates by chemical beam epitaxy. We show that nanowire nucleation is enhanced by sputtering the silicon substrate with energetic particles. We argue that particle bombardment introduces lattice defects on the silicon surface that serve as preferential nucleation sites. The formation of these nucleation sites can be controlled by the sputtering parameters, allowing the control of nanowire density in a wide range. Nanowire nucleation is accompanied by unwanted parasitic islands, but careful choice of annealing and growth temperature allows us to strongly reduce the relative density of these islands and to realize samples with high nanowire yield.
catalyst free; InAs; nanowire; silicon
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/384904
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact