Climate change induced by greenhouse gas emissions is expected to alter the natural availability of water, affecting domestic, agricultural and industrial uses. This work aims at assessing the possible future impacts of climate change on precipitation, temperature and runoff, and to simulate the effects on reservoir demand-performance curves. To this aim, a modeling chain is set up, based on the combined use of regional climate models (RCMs) and water supply system simulation models. The methodology is applied to the Pozzillo reservoir, located in Sicily (Italy), which has experienced several droughts in the past. We use an RCM model that, based on a previous study, has proved to be the most reliable in the area, among those of the EURO-CORDEX initiative. RCM precipitation and temperature monthly time series are used to generate future reservoir inflow data, according to two representative concentration pathways, RCP4.5 (intermediate emissions scenario) and RCP8.5 (high emissions scenario) and a two-step bias correction procedure. Simulation of the reservoir indicated that, due to reservoir inflow reduction induced by climate change, performances of the Pozzillo reservoir are predicted to decrease significantly in the future, with impacts of RCP8.5 generally higher than RCP4.5.

Assessing future impacts of climate change on water supply system performance: Application to the Pozzillo Reservoir in Sicily, Italy

Peres D. J.
;
Cancelliere A.
2019-01-01

Abstract

Climate change induced by greenhouse gas emissions is expected to alter the natural availability of water, affecting domestic, agricultural and industrial uses. This work aims at assessing the possible future impacts of climate change on precipitation, temperature and runoff, and to simulate the effects on reservoir demand-performance curves. To this aim, a modeling chain is set up, based on the combined use of regional climate models (RCMs) and water supply system simulation models. The methodology is applied to the Pozzillo reservoir, located in Sicily (Italy), which has experienced several droughts in the past. We use an RCM model that, based on a previous study, has proved to be the most reliable in the area, among those of the EURO-CORDEX initiative. RCM precipitation and temperature monthly time series are used to generate future reservoir inflow data, according to two representative concentration pathways, RCP4.5 (intermediate emissions scenario) and RCP8.5 (high emissions scenario) and a two-step bias correction procedure. Simulation of the reservoir indicated that, due to reservoir inflow reduction induced by climate change, performances of the Pozzillo reservoir are predicted to decrease significantly in the future, with impacts of RCP8.5 generally higher than RCP4.5.
2019
EURO-CORDEX; Irrigation; Mediterranean climate; RCM; RCP; Reliability; Vulnerability; Water supply systems
File in questo prodotto:
File Dimensione Formato  
Assessing future impacts of climate change on water supply system performance.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/385670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact