Hydroxyapatite (HA) was coated onto the surface of commercially pure titanium grade 4 (a material generally used for implant application) by a dip coating method using HA sol. Hydroxyapatite sol was synthesized via sol–gel using Ca(NO3)2∙4H2O and P2O5 as precursors. The surface of the HA coating was homogeneous, as determined by scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and X-ray diffraction (XRD), which allowed the materials to be characterized. The bioactivity of the synthesized materials and their efficiency for use as future bone implants was confirmed by observing the formation of a layer of hydroxyapatite on the surface of the samples soaked in a fluid simulating the composition of human blood plasma. To verify the biocompatibility of the obtained biomaterial, fibroblasts were grown on a glass surface and were tested for viability after 24 h. The results of the WST-8 analysis suggest that the HA systems, prepared by the sol–gel method, are most suitable for modifying the surface of titanium implants and improving their biocompatibility.

Use of the Sol–Gel Method for the Preparation of Coatings of Titanium Substrates with Hydroxyapatite for Biomedical Application

Ignazio Blanco;
2020-01-01

Abstract

Hydroxyapatite (HA) was coated onto the surface of commercially pure titanium grade 4 (a material generally used for implant application) by a dip coating method using HA sol. Hydroxyapatite sol was synthesized via sol–gel using Ca(NO3)2∙4H2O and P2O5 as precursors. The surface of the HA coating was homogeneous, as determined by scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and X-ray diffraction (XRD), which allowed the materials to be characterized. The bioactivity of the synthesized materials and their efficiency for use as future bone implants was confirmed by observing the formation of a layer of hydroxyapatite on the surface of the samples soaked in a fluid simulating the composition of human blood plasma. To verify the biocompatibility of the obtained biomaterial, fibroblasts were grown on a glass surface and were tested for viability after 24 h. The results of the WST-8 analysis suggest that the HA systems, prepared by the sol–gel method, are most suitable for modifying the surface of titanium implants and improving their biocompatibility.
2020
sol–gel synthesis; hydroxyapatite; titanium substrate coating; biocompatibility
File in questo prodotto:
File Dimensione Formato  
100.pdf

accesso aperto

Descrizione: articolo prinicpale
Tipologia: Versione Editoriale (PDF)
Dimensione 914.03 kB
Formato Adobe PDF
914.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/385675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact