Zirconia widely used in biomedical applications has three crystalline forms, but the transformation from tetragonal to monoclinic is a serious problem in the biomedical field. In this regards, silica was added to stabilize the tetragonal zirconia phase. In fact, in this study four SiO2/ZrO2 composites with different percentages of zirconia were synthesized with the sol-gel method. The aim of the present study was to check the suitability of these materials as a vector in the adsorption of an active drug. After the sintering process at different temperatures the materials have been chemically and biologically characterized. The interactions between the inorganic matrices and the identification of the different crystalline phases depending on the temperature of the thermal treatment were evaluated by Fourier transform infrared (FTIR) spectroscopy and XRD analysis. Furthermore, the absorption of ampicillin was carried out using UV–Vis. The bioactivity was studied after soaking the materials in simulated body fluid (SBF) for 21 days, by observing the characteristic peaks of hydroxyapatite by FTIR analysis. Finally, after drug absorption the materials were incubated against Escherichia coli in order to evaluate the antibacterial properties and the release of the drug from the different composites.

Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO2/ZrO2 materials

Ignazio Blanco;
2020-01-01

Abstract

Zirconia widely used in biomedical applications has three crystalline forms, but the transformation from tetragonal to monoclinic is a serious problem in the biomedical field. In this regards, silica was added to stabilize the tetragonal zirconia phase. In fact, in this study four SiO2/ZrO2 composites with different percentages of zirconia were synthesized with the sol-gel method. The aim of the present study was to check the suitability of these materials as a vector in the adsorption of an active drug. After the sintering process at different temperatures the materials have been chemically and biologically characterized. The interactions between the inorganic matrices and the identification of the different crystalline phases depending on the temperature of the thermal treatment were evaluated by Fourier transform infrared (FTIR) spectroscopy and XRD analysis. Furthermore, the absorption of ampicillin was carried out using UV–Vis. The bioactivity was studied after soaking the materials in simulated body fluid (SBF) for 21 days, by observing the characteristic peaks of hydroxyapatite by FTIR analysis. Finally, after drug absorption the materials were incubated against Escherichia coli in order to evaluate the antibacterial properties and the release of the drug from the different composites.
2020
Sol–gel methodGlass ceramicsSilica and zirconiaXRDFTIRAntibacterial activity
File in questo prodotto:
File Dimensione Formato  
103.pdf

solo gestori archivio

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/391789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact