Using the Wigner representation, compatibly with the uncertainty principle, we formulate a quantum maximum entropy principle for the fractional exclusion statistics. By considering anyonic systems satisfying fractional exclusion statistic, all the results available in the literature are generalized in terms of both the kind of statistics and a nonlocal description for excluson gases. Gradient quantum corrections are explicitly given at different levels of degeneracy and classical results are recovered when hbar -> 0.

Quantum Maximum Entropy Principle for Fractional Exclusion Statistics

TROVATO, Massimo;
2013-01-01

Abstract

Using the Wigner representation, compatibly with the uncertainty principle, we formulate a quantum maximum entropy principle for the fractional exclusion statistics. By considering anyonic systems satisfying fractional exclusion statistic, all the results available in the literature are generalized in terms of both the kind of statistics and a nonlocal description for excluson gases. Gradient quantum corrections are explicitly given at different levels of degeneracy and classical results are recovered when hbar -> 0.
File in questo prodotto:
File Dimensione Formato  
PhyRevLetters-13.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 143.57 kB
Formato Adobe PDF
143.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/39641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact