The surface of living cells constitutes a dynamic environment submitted to complex oscillatory motions. Oscillations may modify the uptake of incoming molecules. In this study we explored a bio-mimetic system formed by oscillating bubbles suspended in a sea of randomly distributed diffusants. We investigated by a time-dependent Fokker–Planck equation the effect of the periodic motions on the adsorption of a diffusant onto the moving bubble surface. We introduced both direct interactions between the diffusant and the fluctuating surface and indirect interactions due to the hydrodynamic motions around a vibrating surface. Results are expressed in terms of oscillation frequencies and amplitudes. An overall reduction of the bound diffusant at the bubble surface was observed
Modeling the capture rate by a radially oscillating spherical bubble. A bio-mimetic model for studying the mechanically-mediated uptake by cells,
RAUDINO, Antonio;GRASSI, Antonio
2016-01-01
Abstract
The surface of living cells constitutes a dynamic environment submitted to complex oscillatory motions. Oscillations may modify the uptake of incoming molecules. In this study we explored a bio-mimetic system formed by oscillating bubbles suspended in a sea of randomly distributed diffusants. We investigated by a time-dependent Fokker–Planck equation the effect of the periodic motions on the adsorption of a diffusant onto the moving bubble surface. We introduced both direct interactions between the diffusant and the fluctuating surface and indirect interactions due to the hydrodynamic motions around a vibrating surface. Results are expressed in terms of oscillation frequencies and amplitudes. An overall reduction of the bound diffusant at the bubble surface was observedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.