Strong solvability and uniqueness in the Sobolev space W3,q(Ω), q > n, are proved for the oblique derivative problem ( nΣ i,j=1 a ij(x, u)D iju+b(x, u, Du) = 0 almost everywhere in Ω, δu/δl + σ{x)u =ψ on δΩ, assuming the coefficients of the quasilinear elliptic operator to be Caratheodory functions, a ij ε VMOL ∞ with respect to x, and b to grow at most quadratically with respect to the gradient.

Oblique derivative problem for quasilinear elliptic equations with VMO coefficients

DI FAZIO, Giuseppe;
1996-01-01

Abstract

Strong solvability and uniqueness in the Sobolev space W3,q(Ω), q > n, are proved for the oblique derivative problem ( nΣ i,j=1 a ij(x, u)D iju+b(x, u, Du) = 0 almost everywhere in Ω, δu/δl + σ{x)u =ψ on δΩ, assuming the coefficients of the quasilinear elliptic operator to be Caratheodory functions, a ij ε VMOL ∞ with respect to x, and b to grow at most quadratically with respect to the gradient.
File in questo prodotto:
File Dimensione Formato  
oblique-derivative-problem-for-quasilinear-elliptic-equations-with-vmo-coefficients.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 555.43 kB
Formato Adobe PDF
555.43 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/40007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact