Strong solvability and uniqueness in the Sobolev space W3,q(Ω), q > n, are proved for the oblique derivative problem ( nΣ i,j=1 a ij(x, u)D iju+b(x, u, Du) = 0 almost everywhere in Ω, δu/δl + σ{x)u =ψ on δΩ, assuming the coefficients of the quasilinear elliptic operator to be Caratheodory functions, a ij ε VMOL ∞ with respect to x, and b to grow at most quadratically with respect to the gradient.
Oblique derivative problem for quasilinear elliptic equations with VMO coefficients
DI FAZIO, Giuseppe;
1996-01-01
Abstract
Strong solvability and uniqueness in the Sobolev space W3,q(Ω), q > n, are proved for the oblique derivative problem ( nΣ i,j=1 a ij(x, u)D iju+b(x, u, Du) = 0 almost everywhere in Ω, δu/δl + σ{x)u =ψ on δΩ, assuming the coefficients of the quasilinear elliptic operator to be Caratheodory functions, a ij ε VMOL ∞ with respect to x, and b to grow at most quadratically with respect to the gradient.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
oblique-derivative-problem-for-quasilinear-elliptic-equations-with-vmo-coefficients.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
555.43 kB
Formato
Adobe PDF
|
555.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.