Orbital angular momentum (OAM) is gaining great attention in the physics and electromagnetic community owing to an intriguing debate concerning its suitability for widening channel capacity in next-generation wireless communications. While such a debate is still a matter of controversy, we exploit OAM generation for microwave imaging within the classical first order linearized models, i.e., Born and Rytov approximation. Physical insights into different fields carrying ℓ-order OAM are conveniently exploited to propose possible alternative imaging approaches and paradigms in microwave imaging.
On the Orbital Angular Momentum Incident Fields in Linearized Microwave Imaging
Pavone S. C.Primo
;Sorbello G.;Di Donato L.
2020-01-01
Abstract
Orbital angular momentum (OAM) is gaining great attention in the physics and electromagnetic community owing to an intriguing debate concerning its suitability for widening channel capacity in next-generation wireless communications. While such a debate is still a matter of controversy, we exploit OAM generation for microwave imaging within the classical first order linearized models, i.e., Born and Rytov approximation. Physical insights into different fields carrying ℓ-order OAM are conveniently exploited to propose possible alternative imaging approaches and paradigms in microwave imaging.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
sensors-20-01905 (1).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.