An accurate estimate of rainfall levels is fundamental in numerous application scenarios: weather forecasting, climate models, design of hydraulic structures, precision agriculture, etc. An accurate estimate becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. Unfortunately, to date, traditional techniques for estimating rainfall levels present numerous critical issues. The algorithm applies the Convolution Neural Network (CNN) directly to the audio signal, using 3 s sliding windows with an oset of only 100 milliseconds. Therefore, by using low cost and low power hardware, the proposed algorithm allows implementing critical high rainfall event alerting mechanisms with short response times and low estimation errors. More specifically, this paper proposes a new approach to rainfall estimation based on the classification of dierent acoustic timbres that rain produces at dierent intensities and on CNN. The results obtained on seven classes ranging from “No rain” to “Cloudburst” indicate an average accuracy of 75%, which rises to 93% if the misclassifications of the adjacent classes are not considered. Some application contexts concern smart cities for which the integration of an audio sensor inside the luminaire of a street lamp is foreseen, precision agriculture, as well as highway safety, by minimizing the risks of aquaplaning.

An Innovative Acoustic Rain Gauge Based on Convolutional Neural Networks

Avanzato, Roberta;Beritelli, Francesco
2020-01-01

Abstract

An accurate estimate of rainfall levels is fundamental in numerous application scenarios: weather forecasting, climate models, design of hydraulic structures, precision agriculture, etc. An accurate estimate becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. Unfortunately, to date, traditional techniques for estimating rainfall levels present numerous critical issues. The algorithm applies the Convolution Neural Network (CNN) directly to the audio signal, using 3 s sliding windows with an oset of only 100 milliseconds. Therefore, by using low cost and low power hardware, the proposed algorithm allows implementing critical high rainfall event alerting mechanisms with short response times and low estimation errors. More specifically, this paper proposes a new approach to rainfall estimation based on the classification of dierent acoustic timbres that rain produces at dierent intensities and on CNN. The results obtained on seven classes ranging from “No rain” to “Cloudburst” indicate an average accuracy of 75%, which rises to 93% if the misclassifications of the adjacent classes are not considered. Some application contexts concern smart cities for which the integration of an audio sensor inside the luminaire of a street lamp is foreseen, precision agriculture, as well as highway safety, by minimizing the risks of aquaplaning.
2020
audio pattern recognition and classification; rainfall estimation; audio signal processing; smart audio sensors; convolutional neural networks (CNN)
File in questo prodotto:
File Dimensione Formato  
information-11-00183-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/409348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact