We obtain a modified version of the Spanne–Peetre inequality in the context of Morrey spaces with mixed norm. The geometric structure of the mixed Morrey spaces under consideration, dictates the new definition of Morrey–Lipschitz space. The Spanne–Peetre inequality that we find ensures that if a function belongs to a suitable Morrey space with mixed norm, then the modified integral operator which characterizes the Spanne–Peetre inequality, belongs to a suitable Morrey–Lipschitz space.
A Modified Spanne–Peetre Inequality on Mixed Morrey Spaces
Scapellato, Andrea
2020-01-01
Abstract
We obtain a modified version of the Spanne–Peetre inequality in the context of Morrey spaces with mixed norm. The geometric structure of the mixed Morrey spaces under consideration, dictates the new definition of Morrey–Lipschitz space. The Spanne–Peetre inequality that we find ensures that if a function belongs to a suitable Morrey space with mixed norm, then the modified integral operator which characterizes the Spanne–Peetre inequality, belongs to a suitable Morrey–Lipschitz space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1007-s40840-020-00914-x.pdf
solo gestori archivio
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
310.53 kB
Formato
Adobe PDF
|
310.53 kB | Adobe PDF | Visualizza/Apri |
A Modified Spanne–Peetre Inequality on Mixed Morrey Spaces.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
299.77 kB
Formato
Adobe PDF
|
299.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.