We propose an operational framework to study the nonequilibrium thermodynamics of a quantum system S that is coupled to a detector D whose state is continuously monitored, allowing us to single out individual quantum trajectories of S. We focus on detailed fluctuation theorems and characterize the entropy production of the system. We establish fundamental differences with respect to the thermodynamics of unmonitored, unitarily evolved systems. We consider the paradigmatic example of circuit QED, where superconducting qubits can be coupled to a continuously monitored resonator and show numerical simulations using state-of-the-art experimental parameters.

Nonequilibrium thermodynamics of continuously measured quantum systems: A circuit QED implementation

Di Stefano P. G.;Lutz E.;Falci G.;Paternostro M.
2018-01-01

Abstract

We propose an operational framework to study the nonequilibrium thermodynamics of a quantum system S that is coupled to a detector D whose state is continuously monitored, allowing us to single out individual quantum trajectories of S. We focus on detailed fluctuation theorems and characterize the entropy production of the system. We establish fundamental differences with respect to the thermodynamics of unmonitored, unitarily evolved systems. We consider the paradigmatic example of circuit QED, where superconducting qubits can be coupled to a continuously monitored resonator and show numerical simulations using state-of-the-art experimental parameters.
File in questo prodotto:
File Dimensione Formato  
distefano2018.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Dimensione 647.85 kB
Formato Adobe PDF
647.85 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/414880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact