Osteoarthritis (OA) represents a final and common pathway for all major traumatic insults to synovial joints. OA is the most common form of degenerative joint disease and a major cause of pain and disability. Despite the global increase in the incidence of OA, there are no effective pharmacotherapies capable of restoring the original structure and function of damaged articular cartilage. Consequently cell-based and biological therapies for osteoarthritis (OA) and related orthopaedic disorders have become thriving areas of research and development. Autologous chondrocyte implantation (ACI) has been used for treatment of osteoarticular lesions for over two decades. Although chondrocyte-based therapy has the capacity to slow down the progression of OA and delay partial or total joint replacement surgery, currently used procedures are associated with the risk of serious adverse events. Complications of ACI include hypertrophy, disturbed fusion, delamination, and graft failure. Therefore there is significant interest in improving the success rate of ACI by improving surgical techniques and preserving the phenotype of the primary chondrocytes used in the procedure. Future tissue-engineering approaches for cartilage repair will also benefit from advances in chondrocyte-based repair strategies. This review article focuses on the structure and function of articular cartilage and the pathogenesis of OA in the context of the rising global burden of musculoskeletal disease. We explore the challenges associated with cartilage repair and regeneration using cell-based therapies that use chondrocytes and mesenchymal stem cells (MSCs). This paper also explores common misconceptions associated with cell-based therapy and highlights a few areas for future investigation.

Chondrocyte and Mesenchymal Stem Cell-Based Therapies for Cartilage Repair in Osteoarthritis and Related Orthopaedic Conditions

MUSUMECI, GIUSEPPE
Penultimo
;
2014-01-01

Abstract

Osteoarthritis (OA) represents a final and common pathway for all major traumatic insults to synovial joints. OA is the most common form of degenerative joint disease and a major cause of pain and disability. Despite the global increase in the incidence of OA, there are no effective pharmacotherapies capable of restoring the original structure and function of damaged articular cartilage. Consequently cell-based and biological therapies for osteoarthritis (OA) and related orthopaedic disorders have become thriving areas of research and development. Autologous chondrocyte implantation (ACI) has been used for treatment of osteoarticular lesions for over two decades. Although chondrocyte-based therapy has the capacity to slow down the progression of OA and delay partial or total joint replacement surgery, currently used procedures are associated with the risk of serious adverse events. Complications of ACI include hypertrophy, disturbed fusion, delamination, and graft failure. Therefore there is significant interest in improving the success rate of ACI by improving surgical techniques and preserving the phenotype of the primary chondrocytes used in the procedure. Future tissue-engineering approaches for cartilage repair will also benefit from advances in chondrocyte-based repair strategies. This review article focuses on the structure and function of articular cartilage and the pathogenesis of OA in the context of the rising global burden of musculoskeletal disease. We explore the challenges associated with cartilage repair and regeneration using cell-based therapies that use chondrocytes and mesenchymal stem cells (MSCs). This paper also explores common misconceptions associated with cell-based therapy and highlights a few areas for future investigation.
2014
Chondrocytes; Mesenchymal Stem cells ; Cartilage repair
File in questo prodotto:
File Dimensione Formato  
maturitas.pdf

accesso aperto

Licenza: Non specificato
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/41868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 208
  • ???jsp.display-item.citation.isi??? 199
social impact