In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing Si-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior. (C) 2002 Elsevier Science B.V. All rights reserved.

In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing Si-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior. (C) 2002 Elsevier Science B.V. All rights reserved.

Human serum albumin adsorption onto a-SiC : H and a-C : H thin films deposited by plasma enhanced chemical vapor deposition

Auditore A;SATRIANO, Cristina;MARLETTA, Giovanni
2002-01-01

Abstract

In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing Si-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior. (C) 2002 Elsevier Science B.V. All rights reserved.
2002
In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing Si-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior. (C) 2002 Elsevier Science B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/42274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact