We examined the hypothesis that vascular and renal dysfunction caused by angiotensin II (Ang II) through increased levels of blood pressure, inflammatory cytokines, and oxidative stress in Sprague-Dawley rats can be prevented by lentiviral-mediated delivery of endothelial heme oxygenase (HO)-1. We targeted the vascular endothelium using a lentiviral construct expressing human HO-1 under the control of the endothelium-specific promoter VE-cadherin (VECAD-HO-1) and examined the effect of long-term human HO-1 expression on blood pressure in Ang II-mediated increases in blood pressure and oxidant stress. A bolus injection of VECAD-HO-1 into the renal artery resulted in expression of human HO-1 for up to 6-9 weeks. Sprague-Dawley rats were implanted with Ang II minipumps and treated with lentivirus carrying either the HO-1 or green fluorescent protein. Renal tissue from VECAD-HO-1-transduced rats expresses human HO-1 mRNA and proteins without an effect on endogenous HO-1. Infusion of Ang II increased blood pressure (p < 0.001) but decreased vascular relaxation in response to acetylcholine, endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) levels, and renal and plasma levels of adiponectin (p < 0.05); in contrast, plasma tumor necrosis factor-α and monocyte chemoattractant protein-1 levels increased. Ang II-treated animals had higher levels of superoxide anion and inducible nitric oxide synthase and increased urinary protein and plasma creatinine levels. Lentiviral transduction with the VECAD-HO-1 construct attenuated the increase in blood pressure (p < 0.05), improved vascular relaxation, increased plasma adiponectin, and prevented the elevation in urinary protein and plasma creatinine in Ang II-treated rats. Endothelial-specific expression of HO-1 also reduced oxidative stress and levels of inflammatory cytokines resulting in increased expression of the anti-apoptotic proteins phosphorylated AKT, phosphorylated AMP-activated protein kinase, peNOS, and eNOS. Collectively, these findings demonstrate that endothelial-specific increases in HO-1 expression attenuate Ang II hypertension and the associated vascular dysfunction that is associated with increases in adiponectin and peNOS and reductions in oxidative stress and levels of inflammatory cytokines.

Lentiviral-Human heme oxygenase targeting endothelium improved vascular function in angiotensin II animal model of hypertension.

VANELLA, LUCA;
2011-01-01

Abstract

We examined the hypothesis that vascular and renal dysfunction caused by angiotensin II (Ang II) through increased levels of blood pressure, inflammatory cytokines, and oxidative stress in Sprague-Dawley rats can be prevented by lentiviral-mediated delivery of endothelial heme oxygenase (HO)-1. We targeted the vascular endothelium using a lentiviral construct expressing human HO-1 under the control of the endothelium-specific promoter VE-cadherin (VECAD-HO-1) and examined the effect of long-term human HO-1 expression on blood pressure in Ang II-mediated increases in blood pressure and oxidant stress. A bolus injection of VECAD-HO-1 into the renal artery resulted in expression of human HO-1 for up to 6-9 weeks. Sprague-Dawley rats were implanted with Ang II minipumps and treated with lentivirus carrying either the HO-1 or green fluorescent protein. Renal tissue from VECAD-HO-1-transduced rats expresses human HO-1 mRNA and proteins without an effect on endogenous HO-1. Infusion of Ang II increased blood pressure (p < 0.001) but decreased vascular relaxation in response to acetylcholine, endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) levels, and renal and plasma levels of adiponectin (p < 0.05); in contrast, plasma tumor necrosis factor-α and monocyte chemoattractant protein-1 levels increased. Ang II-treated animals had higher levels of superoxide anion and inducible nitric oxide synthase and increased urinary protein and plasma creatinine levels. Lentiviral transduction with the VECAD-HO-1 construct attenuated the increase in blood pressure (p < 0.05), improved vascular relaxation, increased plasma adiponectin, and prevented the elevation in urinary protein and plasma creatinine in Ang II-treated rats. Endothelial-specific expression of HO-1 also reduced oxidative stress and levels of inflammatory cytokines resulting in increased expression of the anti-apoptotic proteins phosphorylated AKT, phosphorylated AMP-activated protein kinase, peNOS, and eNOS. Collectively, these findings demonstrate that endothelial-specific increases in HO-1 expression attenuate Ang II hypertension and the associated vascular dysfunction that is associated with increases in adiponectin and peNOS and reductions in oxidative stress and levels of inflammatory cytokines.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/42286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 47
social impact