Biologically inspired computation has been recently used with mathematical models towards the design of new synthetic organisms. In this work, we use Pareto optimality to optimize these organisms in a multi-objective fashion. We infer the best knockout strategies to perform specific tasks in bacteria, which involve concurrent maximization/minimization of multiple functions (codomain) and optimization of several decision variables (domain). Furthermore, we propose and exploit a mapping between the metabolism and a register machine. We show that optimized bacteria have computational capability and act as molecular Turing machines programmed using a Pareto optimal solution. Finally, we investigate communication between bacteria as a means to evaluate their computational capability. We report that the density and gradient of the Pareto curve are useful tools to compare models and understand their structure, while modelling organisms as computers proves useful to carry out computation using biological machines with specific input–output conditions, as well as to estimate the bacterial computational effort for specific tasks.

Analysis and Design of Molecular Machines

NICOSIA, GIUSEPPE
2015-01-01

Abstract

Biologically inspired computation has been recently used with mathematical models towards the design of new synthetic organisms. In this work, we use Pareto optimality to optimize these organisms in a multi-objective fashion. We infer the best knockout strategies to perform specific tasks in bacteria, which involve concurrent maximization/minimization of multiple functions (codomain) and optimization of several decision variables (domain). Furthermore, we propose and exploit a mapping between the metabolism and a register machine. We show that optimized bacteria have computational capability and act as molecular Turing machines programmed using a Pareto optimal solution. Finally, we investigate communication between bacteria as a means to evaluate their computational capability. We report that the density and gradient of the Pareto curve are useful tools to compare models and understand their structure, while modelling organisms as computers proves useful to carry out computation using biological machines with specific input–output conditions, as well as to estimate the bacterial computational effort for specific tasks.
File in questo prodotto:
File Dimensione Formato  
Analysis and design of molecular machines.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/42912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact