Antibiotics represent essential drugs to contrast the insurgence of bacterial infections in humans and animals. Their extensive use in livestock farming, including aquaculture, has improved production performances and food safety. However, their overuse can implicate a risk of water pollution and related antimicrobial resistance. Consequently, innovative strategies for successfully removing antibiotic contaminants have to be advanced to protect human health. Among them, photodegradation TiO2-driven under solar irradiation appears not only as a promising method, but also a sustainable pathway. Hence, we evaluated several composite TiO2 powders with H2TCPP, CuTCPP, ZnTCPP, and SnT4 porphyrin for this scope in order to explore the effect of porphyrins sensitization on titanium dioxide. The synthesis was realized through a fully non-covalent functionalization in water at room conditions. The efficacy of obtained composite materials was also tested in photodegrading oxolinic acid and oxytetracycline in aqueous solution at micromolar concentrations. Under simulated solar irradiation, TiO2 functionalized with CuTCPP has shown encouraging results in the removal of oxytetracycline from water, by opening the way as new approaches to struggle against antibiotic’s pollution and, finally, to represent a new valuable tool of public health

Photodegradation of Antibiotics by Noncovalent Porphyrin-Functionalized TiO2 in Water for the Bacterial Antibiotic Resistance Risk Management

Massimiliano Gaeta;Aurore Fraix;Matteo Barcellona;Gea Oliveri Conti
Writing – Review & Editing
;
Maria Elena Fragalà;Margherita Ferrante;Roberto Purrello;Alessandro D’Urso
2020-01-01

Abstract

Antibiotics represent essential drugs to contrast the insurgence of bacterial infections in humans and animals. Their extensive use in livestock farming, including aquaculture, has improved production performances and food safety. However, their overuse can implicate a risk of water pollution and related antimicrobial resistance. Consequently, innovative strategies for successfully removing antibiotic contaminants have to be advanced to protect human health. Among them, photodegradation TiO2-driven under solar irradiation appears not only as a promising method, but also a sustainable pathway. Hence, we evaluated several composite TiO2 powders with H2TCPP, CuTCPP, ZnTCPP, and SnT4 porphyrin for this scope in order to explore the effect of porphyrins sensitization on titanium dioxide. The synthesis was realized through a fully non-covalent functionalization in water at room conditions. The efficacy of obtained composite materials was also tested in photodegrading oxolinic acid and oxytetracycline in aqueous solution at micromolar concentrations. Under simulated solar irradiation, TiO2 functionalized with CuTCPP has shown encouraging results in the removal of oxytetracycline from water, by opening the way as new approaches to struggle against antibiotic’s pollution and, finally, to represent a new valuable tool of public health
2020
TiO2; porphyrin; antibiotic; photocatalysis; noncovalent functionalization; risk management
File in questo prodotto:
File Dimensione Formato  
ijms-21-03775.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/431803
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact