This paper shows how pipe replacements and control valve installations can be optimized in water distribution networks to reduce leakage, under minimum nodal pressure constraints. To this end, a hybrid multiobjective algorithm, which has pipe diameters and valve positions and settings as decisional variables, was set up. The algorithm also enables identification of the isolation valves that have to be closed in order to improve effectiveness of the control valves installed. The algorithm is initially applied to the optimal valve location problem, where it explores the trade-off between the number of installed control valves and the daily leakage volume. In this context, the analysis of the results proves the new algorithm more effective than a multiobjective genetic algorithm widely adopted in the scientific literature. Furthermore, it shows that if some isolation valves identified ad hoc are closed in the network, the installation of control valves determines larger leakage volume reductions. In a second application of the algorithm, pipe replacements and control valve installations are simultaneously performed. In this case, a Pareto front of trade-off solutions between installation costs and daily leakage volume is obtained. For the choice of the final solution within the front, an economic criterion based on the long-term convenience analysis is also illustrated.

Multiobjective Optimization of Pipe Replacements and Control Valve Installations for Leakage Attenuation in Water Distribution Networks

PEZZINGA, Giuseppe
2015-01-01

Abstract

This paper shows how pipe replacements and control valve installations can be optimized in water distribution networks to reduce leakage, under minimum nodal pressure constraints. To this end, a hybrid multiobjective algorithm, which has pipe diameters and valve positions and settings as decisional variables, was set up. The algorithm also enables identification of the isolation valves that have to be closed in order to improve effectiveness of the control valves installed. The algorithm is initially applied to the optimal valve location problem, where it explores the trade-off between the number of installed control valves and the daily leakage volume. In this context, the analysis of the results proves the new algorithm more effective than a multiobjective genetic algorithm widely adopted in the scientific literature. Furthermore, it shows that if some isolation valves identified ad hoc are closed in the network, the installation of control valves determines larger leakage volume reductions. In a second application of the algorithm, pipe replacements and control valve installations are simultaneously performed. In this case, a Pareto front of trade-off solutions between installation costs and daily leakage volume is obtained. For the choice of the final solution within the front, an economic criterion based on the long-term convenience analysis is also illustrated.
2015
Multiobjective optimization; Genetic algorithms; Linear programming; Water distribution; Leakage; Pressure; Control valve
File in questo prodotto:
File Dimensione Formato  
Multiobjective Optimization of Pipe Replacements.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/43517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 70
social impact