In this work we use the semi-empirical atmospheric modeling method to obtain the chro-mospheric temperature, pressure, density and magnetic field distribution versus height in the K2 primary component of the RS CVn binary system HR 7428. While temperature, pressure, density are the standard output of the semi-empirical modeling technique, the chromospheric magnetic field estimation versus height comes from considering the possibility of not im-posing hydrostatic equilibrium in the semi-empirical computation. The stability of the best non-hydrostatic equilibrium model, implies the presence of an additive (toward the center of the star) pressure, that decreases in strength from the base of the chromosphere toward the outer layers. Interpreting the additive pressure as magnetic pressure we estimated a magnetic field intensity of about 500 gauss at the base of the chromosphere.

Estimating the chromospheric magnetic field from a revised NLTE modelling: the case of HR 7428

Giarrusso M.;LEONE, Francesco;
2017-01-01

Abstract

In this work we use the semi-empirical atmospheric modeling method to obtain the chro-mospheric temperature, pressure, density and magnetic field distribution versus height in the K2 primary component of the RS CVn binary system HR 7428. While temperature, pressure, density are the standard output of the semi-empirical modeling technique, the chromospheric magnetic field estimation versus height comes from considering the possibility of not im-posing hydrostatic equilibrium in the semi-empirical computation. The stability of the best non-hydrostatic equilibrium model, implies the presence of an additive (toward the center of the star) pressure, that decreases in strength from the base of the chromosphere toward the outer layers. Interpreting the additive pressure as magnetic pressure we estimated a magnetic field intensity of about 500 gauss at the base of the chromosphere.
radiative transfer; stars: activity; stars: chromospheres
File in questo prodotto:
File Dimensione Formato  
stx613.pdf

non disponibili

Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/43682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact