We have recently shown that covalent attachment of the NO moiety to the HIV protease inhibitor Saquinavir (Saq) produced a qualitatively new chemical entity, named Saquinavir-NO (Saq-NO), with enhanced anticancer properties and reduced toxicity. In this study we evaluated the impact of Saq-NO on the growth of A375 human melanoma cells, as a prototype of NO-dependent cancer model. The novel compound strongly affected the in vitro and in vivo progression of A375 melanoma cell growth. The mechanism of antimelanoma action comprised dual drug activity-induction of apoptotic cell death and acquisition of melanoma cell responsiveness to TRAIL. Saq-NO-triggered apoptosis was dependent on transient AKT up-regulation and reduced pERK and iNOS expression that were observed within the first 12 h of exposure to the drug. Thereafter, however, Saq-NO up-regulated both iNOS transcription and NO endogenous synthesis and sensitized A375 cells to TRAIL. Furthermore, reduced YY1 expression was observed after 24 h of Saq-NO exposure, which correlated with increased expression of DR5. The biological relevance of this complex and powerful action of Saq-NO was consistent with the marked drug-induced inhibition of the growth of A375 xenotransplants in nude mice. J. Cell. Physiol. 226: 1803-1812, 2011. (C) 2010 Wiley-Liss, Inc.

Cytotoxic and Immune-Sensitizing Properties of Nitric Oxide-Modified Saquinavir in iNOS-Positive Human Melanoma Cells

MANGANO, KATIA DOMENICA;DI CATALDO, Antonio;NICOLETTI, FERDINANDO
2011-01-01

Abstract

We have recently shown that covalent attachment of the NO moiety to the HIV protease inhibitor Saquinavir (Saq) produced a qualitatively new chemical entity, named Saquinavir-NO (Saq-NO), with enhanced anticancer properties and reduced toxicity. In this study we evaluated the impact of Saq-NO on the growth of A375 human melanoma cells, as a prototype of NO-dependent cancer model. The novel compound strongly affected the in vitro and in vivo progression of A375 melanoma cell growth. The mechanism of antimelanoma action comprised dual drug activity-induction of apoptotic cell death and acquisition of melanoma cell responsiveness to TRAIL. Saq-NO-triggered apoptosis was dependent on transient AKT up-regulation and reduced pERK and iNOS expression that were observed within the first 12 h of exposure to the drug. Thereafter, however, Saq-NO up-regulated both iNOS transcription and NO endogenous synthesis and sensitized A375 cells to TRAIL. Furthermore, reduced YY1 expression was observed after 24 h of Saq-NO exposure, which correlated with increased expression of DR5. The biological relevance of this complex and powerful action of Saq-NO was consistent with the marked drug-induced inhibition of the growth of A375 xenotransplants in nude mice. J. Cell. Physiol. 226: 1803-1812, 2011. (C) 2010 Wiley-Liss, Inc.
File in questo prodotto:
File Dimensione Formato  
2.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 785.64 kB
Formato Adobe PDF
785.64 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/44218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact