The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosynchrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100 per cent circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a time-scale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provide us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 min. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre-main-sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high-sensitivity radio interferometers such as Square Kilometre Array can exploit.

The radio lighthouse CU Virginis: the spin-down of a single main-sequence star

TRIGILIO, CORRADO;LEONE, Francesco
2008-01-01

Abstract

The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosynchrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100 per cent circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a time-scale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provide us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 min. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre-main-sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high-sensitivity radio interferometers such as Square Kilometre Array can exploit.
masers , polarization ; starschemically peculiar ; stars: magnetic field
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/45037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 39
social impact