Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power

Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages.

GALVANO, Fabio;
2015-01-01

Abstract

Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power
File in questo prodotto:
File Dimensione Formato  
Protocatechuic Acid Prevents oxLDL.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/45232
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 30
social impact