Hierarchical self-assembly of porphyrins is an intrigue research field, which can lead to the design of functional materials. Porphyrin derivatives self-assembling under hierarchical control allows to understand the principles governing molecular recognition processes, as demonstrated for meso-tetrakis(4-phosphonatophenyl) porphyne (H2TPPP) whose polyprotic nature is responsible for a pH-dependent hierarchical aggregation. Herein, self-assembly of meso-tris(4-phosphonatophenyl) corrole (TPPC) in aqueous solution has been spectroscopically studied and compared to that of TPPP. The corrole aggregation does not follow the hierarchical rules that govern the porphyrin counterpart due to the accessibility of the core of the macrocycle to protons, promoted by the reduced number of involved intermolecular H-bonds.
Hierarchical self-assembly of porphyrins is an intrigue research field, which can lead to the design of functional materials. Porphyrin derivatives self-assembling under hierarchical control allows to understand the principles governing molecular recognition processes, as demonstrated for meso-tetrakis(4-phosphonatophenyl) porphyne (H2TPPP) whose polyprotic nature is responsible for a pH-dependent hierarchical aggregation. Herein, self-assembly of meso-tris(4-phosphonatophenyl) corrole (TPPC) in aqueous solution has been spectroscopically studied and compared to that of TPPP. The corrole aggregation does not follow the hierarchical rules that govern the porphyrin counterpart due to the accessibility of the core of the macrocycle to protons, promoted by the reduced number of involved intermolecular H-bonds.
Spectroscopic characterization of water soluble phosphonato corrole: The effect of H-bounds on the self-assembled species
RANDAZZO, ROSALBA;Gaeta M;FRAGALA', Maria Elena;D'URSO, ALESSANDRO;PURRELLO, Roberto
2016-01-01
Abstract
Hierarchical self-assembly of porphyrins is an intrigue research field, which can lead to the design of functional materials. Porphyrin derivatives self-assembling under hierarchical control allows to understand the principles governing molecular recognition processes, as demonstrated for meso-tetrakis(4-phosphonatophenyl) porphyne (H2TPPP) whose polyprotic nature is responsible for a pH-dependent hierarchical aggregation. Herein, self-assembly of meso-tris(4-phosphonatophenyl) corrole (TPPC) in aqueous solution has been spectroscopically studied and compared to that of TPPP. The corrole aggregation does not follow the hierarchical rules that govern the porphyrin counterpart due to the accessibility of the core of the macrocycle to protons, promoted by the reduced number of involved intermolecular H-bonds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.